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SOLUTIONS FOR ASSIGNMENT #3

Reading Assignments:
(a) Read Section 15.4 of Peskin and Schroder on Lie algebras.
(b) Read Chapter 2 of Peskin and Schroeder.

Problem 1
(a) Write down the generator of SU(2) in the adjoint representation.
(b) Do Problem 15.1 in Peskin and Schroeder.
(c) Find four different SU(2) subalgebras of the SU(3).
Solution:
(a) Using (tbG)ac = ifabc = iεabc for SU(2) we have

t1G =

 0 0 0
0 0 −i
0 i 0

 , t2G =

 0 0 i
0 0 0
−i 0 0

 , t3G =

 0 −i 0
i 0 0
0 0 0

 .

(b)
(b-a) In this basis the SU(3) generators are 3× 3 traceless Hermitian matrices. Hermiticity
put 32 = 9 constraints whereas the tracelessness adds an additioinal constraint. So in the
end there are only 2× 32 − 32 − 1 = 8 generators.
(b-b) f 146 = 0, f257 = 1/2, f458 =

√
3/2.

(b-c) C(N) = 1/2.
(b-d) C2(N) = 4/3.
(c) It is clear that {t1, t2, t3}, {t4, t5, t3/2+

√
3t8/2}, and {t6, t7,−t3/2+

√
3t8/2} each forms an

SU(2) subalgebra. For the fourth subalgebra one needs to look at the structure constants
and see which three generators close into themselves. There are many possibilities. One
example is {2t2, 2t5, 2t7}, which is nothing but the adjoint representation of the SU(2)
algebra written down in (a).

Problem 2
Consider a free spinless boson φ(x) with the following plane-wave expansion:

φ(x) =

∫
d3k

(2π)3
√

2ωk

(a†k e−ik·x + ak eik·x).

(a) Suppose we treat φ(x) as a quantum field and canonically quantize it using the commu-
tation relations:

[φ(~x, t), φ(~y, t)] = [∂tφ(~x, t), ∂tφ(~y, t)] = 0, [φ(~x, t), ∂tφ(~y, t)] = iδ(3)(x− y).
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Express ak and a†k in terms of φ(~x, 0) and ∂tφ(~x, 0) and show they satisfy the commutation

relations for creation and annihilation operators: [ak, ak′ ] = [a†k, a
†
k′ ] = 0 and [ak, a

†
k′ ] =

δ(3)(k − k′).
(b) Alternatively, treat φ(x) as the simplest quantum field constructed out of the creation

and annihilation operators ak and a†k and show that φ(x) and ∂tφ(x) satisfy the correct
commutation relations as required by the canonical quantization.
(c) In canonical quantization the Hamiltonian of a free spinless boson can be written as

H =

∫
d3x

1

2

[
(∂tφ)2 + (∇φ)2 + m2φ2

]
.

Verify explicitly that

H =

∫
d3x ωk

(
aka

†
k +

1

2
δ(3)(0)

)
.

Solution:
(a) From

φ(~x, 0) =

∫
d3k

(2π)3
√

2ωk

(a†k ei~k·~x + ak e−i~k·~x),

∂tφ(~x, 0) =

∫
d3k

(2π)3
(−i)

√
ωk

2
(a†k ei~k·~x + ak e−i~k·~x),

one could use the inverse Fourier transform and the Fourier representation of the delta
function ∫

d3x e−i(~k−~k′)·~x = δ(3)(~k − ~k′)

to derive

a†k =

∫
d3x

√
ωk

2

[
φ(~x, 0)− i

ωk

∂tφ(~x, 0)

]
e−i~k·~x

ak =

∫
d3x

√
ωk

2

[
φ(~x, 0) +

i

ωk

∂tφ(~x, 0)

]
e−i~k·~x

. From here it is straightforward to compute the commutation relations and show that

[ak, a
†
k′ ] = δ(3)(~k − ~k′), [ak, ak′ ] = [a†k, a

†
k′ ] = 0.

(b) Using the first two equations in (a) as well as the commutation relations for ak and a†k
it is straightforward to prove that the canonical quantization follows.
(c) Again simple and straightforward algebraic manipulations.

Problem 3
The infinite constant in the Hamiltionian in Problem 2 (c),

HCC =

∫
d3x ωk

1

2
δ(3)(0),

actually contains two types of infinities:
(a) The infinity in δ(3)(0) comes about because the space in which our QFT lives is infinite
in volume. To see this explicitly, recall that δ(3)(0) arises from the commutator

[ak, a
†
k′ ] = δ(3)(k − k′) =

∫
d3x e−i(~k−~k′)·~x
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Use the above equation to show that if we had placed the QFT in a box with sides of length
L, then [ak, a

†
k] = L3 which is the volume of the box. Now take the length L →∞ and show

that

HCC =

∫
d3x

1

2
ωk V

where V is the volume of the infinite space. An infinity associated with an infinite volume
is called the infrared divergence.
(b) The infrared divergence comes about because we are computing the total energy of the
system. We could instead compute the energy density HCC ≡ HCC/V to get around the
infrared divergence. Show that there is still a divergence inHCC because we assume the QFT
is valid up to arbitrarily high energy and therefore integrate over arbitrarily high momentum

|~k|. Such a divergence is called the ultraviolate divergence.
(c) Since no one knows how to write down a consistent QFT for gravity, it is reasonable to
assume that our QFT is valid only up to the Planck energy Mpl when the effect of gravity

becomes important. Therefore we should cut off the |~k| integral at Mpl. Calculate the zero-
point energy density HCC in terms of Mpl.
(d) One way to remove the zero-point energy is to add a so-called cosmological constant
term to the Klein-Gordon Lagrangian

L =
1

2

(
∂µφ∂µφ−m2φ2

)
+ ΛCC .

Show that the total zero-point energy density now becomes

Etotal = HCC − ΛCC

(e) Over the last decade our colleagues in cosmology worked very hard and measured Etotal ≈
(10−3 eV)4 in our universe. Assuming that QFT is indeed only valid up to Mpl, what is
the amount of cancellation needed between HCC and ΛCC in order to result in the observed
value? One measure of the fine-tuning necessary is to estimate the order of magnitude of

HCC − ΛCC

HCC + ΛCC

.

This is the famous cosmological constant problem!
Solutions:
(a) It is easy to see that

[ak, a
†
k] =

∫
Box

d3x = L3 = V.

Therefore

HCC =
1

2

∫
d3k ωk[ak, a

†
k] =

1

2

∫
d3k ωk V.

(b)

HCC = HCC/V =
1

2

∫ 2π

0

dφ

∫ +1

−1

d cos θ

∫ ∞

0

|~k|2d|~k|
√
|~k|2 + m2

is still divergent because of the infinite d|~k| integral.
(c) We can approximate the integral by dropping the mass term since Mpl is so large:

HCC = 2π

∫ Mpl

0

|~k|2d|~k|
√
|~k|2 + m2 ≈ 2π

∫ Mpl

0

|~k|3d|~k| = π

2
M4

pl
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(d) With the cosmological constant term the Hamiltonian density becomes

H =
1

2

[
(∂tφ)2 + (∇φ)2 + m2φ2 − ΛCC

]
= ωka

†
kak +HCC − ΛCC .

So Etotal = HCC − ΛCC .
(d) HCC ∼ M4

pl ∼ (1019 GeV)4. So the amount of fine-tuning required is

HCC − ΛCC

HCC + ΛCC

∼
(

10−3 eV

1019 GeV

)4

∼ 10−124.

In other words, the two number must cancel to one in 124 digits in order to result in the
observed vaccumm energy density!
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